Geological Exploration and Tomography with Cosmic Ray Muons: A new Application of Particle Physics Technologies

Douglas Bryman University of British Columbia

Particle Physics: Benefits to Society

Muon Tomography: "CAT Scans" for the Earth and Large Objects

Medical Imaging CAT Scan

Muon Geotomography

Muon Tomography for Security Applications

Cosmic Rays

Star Collapse \rightarrow gamma ray burst

Nature accelerates cosmic rays $10^7 x$ LHC!

Energies and rates of the cosmic-ray particles

Muons: "Who ordered that?"

Cosmic Ray Muons

High energy protons impinging on the upper atmosphere produce pions (kaons) which decay to muons and neutrinos. $\pi^+ \rightarrow \mu^+ \nu$.

Mass: $m_{\mu} = 105.6 \,\text{MeV/c}^2$ $m_{e} = 0.511 \, {\rm MeV/c^2}$ $m_{\mu} = 207 m_e$ Muon Decay $\mu^+ \rightarrow e^+ v_e v_\mu$ Lifetime $\tau_{\mu} = 2.2 \mu s$

High energy muons can penetrate the atmosphere and go deep into the earth.

How do muons survive the trip?

Muon Lifetime: $\tau_{\mu} = 2.2x10^{-6}s$ ("2.2 micro-seconds")

Distance = velocity x time

$$< c \tau_{\mu} = 3x10^8 \frac{m}{s} x2.210^{-6} s = 660m$$

Einstein's theory of Special Relativity:

- The speed of light is constant
- Space and time depend on an observer's state of motion

Consequence: Moving clocks run slow.

From our point of view, the moving muon lasts much longer than if it were at rest. For the muons we're interested in at 1 TeV the "time dilation" factor is 10,000!

Cosmic Ray Muons at Sea Level

High energy muon flux : $\sim 1/cm^2 / min. (70/m^2/s/sr)$

sr = Steradian Unit of solid angle Sphere= 4π sr

8

 $\left\{ \text{Neutrinos from the sun: } 10^{10} / cm^2 / s \right\}$

Cosmic Ray Muon Intensity vs. Momentum (GeV/c)

Underground Physics Labs: Going Deep to Avoid Muons!

Flux vs. depth

CR Muon Intensity Underground

Angular Variation of the Cosmic Ray Spectrum

Angular distribution at ground level

~
$$\cos^2\theta$$
 for E_{μ} ~ 3 GeV

11

Intensity vs. Depth Underground

Figure 1: Cosmic ray muon depth-intensity relationship for three zenith angles, derived from Bogdanova et al. (2006).

Muon Scattering

"Multiple Coulomb Scattering"

High energy muons undergo minimal scattering – travel in ~straight lines

Angular deviation for P> 300 GeV: $\delta\theta \leq 10$ mrad;

10 mrad: **1 m at 100 m.**

Cosmic Ray Tomography

Commonwealth Engineer, July 1, 1955

455

Cosmic Rays Measure Overburden of Tunnel

• Fig. 1—Geiger counter "telescope" in operation in the Guthega-Munyang tunnel. From left are Dr. George and his assistants, Mr. Lehane and Mr. O'Neill.

Geiger counter telescope used for mass determination at Guthega project of Snowy Scheme . . . Equipment described

> By Dr. E. P. George[®] University of Sydney, N.S.W.

> > 13

Kamioka Mountain

Google Earth

Lab

Depth

~ 2750

m.w.e.

Lab

"Super-K" Muon Tomography

100 m contours – constant density

Fig. 3: Topographic map calculated from the observed muon flux at the Super-Kamiokande detector superposed on the geodetic map (dashed contours). The contours are at 100 m intervals, the scale is in m, and the top is SE.

Fig. 2: Topographic maps of the mountain housing the Super-Kamiokande instrument made with downgoing muon data. The view is towards the East, from 15 degrees elevation.

Kamioka zinc mine (Japan)

. G. Learned, 25th ICRC, DuJrban So. Africa (1997).

Soudan2 Muon Tomography

S. Kasahara, University of Minnesota Ph.D thesis (1997).

Soudan, Minn. Iron mine. Depth: 2000 m.w.e (700 m rock)

UNIVERSITY OF MINNESOTA SOUDAN 2 UNDERGROUND LABORATORY SOUDAN UNDERGROUND MINE STATE PARK

Practical Applications of

Muon Geotomography

17

"CT Scanning of the Earth and more"

Studying volcanoes

Exploring for Underground Minerals

High density ores like zinc, nickel, copper, U...)

Ore delineation
Reserves assessment/appraisal
Mine development
Developed mine (brown field) applications
Green field – bore hole application

Eruption of Mt. Vesuvius in AD 79 Pompeii Image: Image:

18

Active Volcanoes

Muon Tomography at an Active Volcano

Nagamine *et al.* (1995, 2003)

Used horizontal cosmic ray muons to look for magma chambers at the top of Tskuba volcano.

Showa-Shinzan lava dome.

Marteau et al. 2012

Hiroyuki K. M. Tanaka,¹ Hideaki Taira,² Tomihisa Uchida,³ Manobu Tanaka,³ Minoru Takeo,¹ Takao Ohminato,¹ Yosuke Aoki,¹ Ryuichi Nishitama,¹ Daigo Shoji,¹ and Hiroshi Tsuiji¹

20

Monitoring, Studying Volcanoes

400 m

Puy de Dôme Inner Structure, imaged through gravimetric tomography (top right) and with atmospheric muons (bottom right)

Linear opacity to atmospheric muons

Muon Tomography

Exploration Geophysics Imaging Techniques

Airborne Electromagnetic Induction Studies

Figure 4: Residual magnetic field intensity measured during the Sterling airborne survey. Also shown are oil- and gas-well locations and pipeline locations from the RRC. Groundwater salinization and resource study in oil well and gas pipeline area

Arctic E-M Induction Studies

Jamin Cristall – Geophysicist Cameco (UBC Physics/Engineering Graduate 2002)

22

Exploration Geophysics Imaging Techniques

- Seismology
- Gravity
- Magnetic methods
- Electric methods Resistivity, IP, potentials, radar

Hit-or-miss Core Drilling

23

Muon Geotomography?

Geological Tomography and Exploration with Cosmic Rays

Attenuation of Cosmic Rays: Due to an additional high density object there is a deficit of cosmic ray muons in certain directions.

Measure muon intensity

total "depth"

Muon Intensity vs. Depth

Simulations and Analysis

©UBC-GIF Forward model: predict observed data set given a model of rock density

©UBC-GIF Inversion: solve 3D rock density distribution given observed data

Forward Model

Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)

Simulation samples

- Based on forward model, generate noise data
- Used to design survey and perform NULL hypotheses tests

Muon Tracking Detectors

Proof-of-principle test at the Price Mine (Strathcona Park) Vancouver Island, British Columbia

- Readily accessible site not currently active for mining
 Shallow herizontal access below denosit
- Shallow, horizontal access below deposit
- Rail and power lines throughout tunnel
- Highly cooperative and enthusiastic industry partner

Price Mine Deposit

Field Test of Muon Geotomography

Underground Mineral Deposit-as determined from drill data model.

1/14/2013

Top View of Deposit Extra Depth

Tracker: "Minerva" Scintillators

1 m² Active Area

Topography (LiDAR) - Muon Data Comparison

Simulation: Data in 3D from Inversion

Inversion of Simulated data

Experiment: Data in 3D from Inversion

Inversion of Experimental data

Background densities (2.7 g/cc) + 0.15 g/cc subtracted to reduce noise $_{36}$

Density Distribution within Ore Body

Comparison of Drill Data, Simulations and Experimental Data

		9	Simulation	Experiment	
		Drill data	Inversion of	Inversion of	Difference between
		model	drill data	experimental data	inversions
	Excess-mass over 2.7g/cm ³	28.9K tons	14.5K tons	12.3K tons	2.2K tons
	$x_{ m CM}$	5150.0 m	5158.7 m	5123.1 m	$35.6 \mathrm{m}$
	$y_{\rm CM}$	3388.0 m	3384.9 m	3409.3 m	-24.4 m
l	$z_{\rm CM}$	$630.3 \mathrm{m}$	637.9 m	$657.3 \mathrm{~m}$	-19.4 m
					38

Future Development: Borehole Instruments

39

Muon Geotomography: Summary and Conclusions

• Muon tomography is a spinoff from Particle Physics Studying the magma chambers of active volcanoes. A new tool for geophysical Mineral Exploration

Other possible applications:

- Monitoring carbon sequestration
- Monitoring water seepage
- •Identifying voids
- •Archeology
- •Monitoring Nuclear waste and reactors
- •Scanning for contraband nuclear materials

•A successful field trial has been performed.

Muon geotomography imaged a known massive sulfide deposit in a complex geological environment. Inverted 3D density images of the deposit are similar to a model derived from drill data.

Limitations arise from inversion ambiguities, access locations, and statistics.

Borehole detectors are being developed

	UBC/AAPS	Doug Bryman(UBC), Zhiyi Liu, James Bueno, Richard Hydomako					
Project	Bern High Energy	Antonio Erditato					
Collaborators	Physics Group	Akitaka Ariga, Ciro Pistillo, Francesca					
		Giacoppo, Igor Kreslo, Jiro Kawada					
	UBC-GIF	Doug Oldenberg, Vlad Kaminski, Kris Davis					
	Geological Survey of Canada	Mark Pilkington					
	NVI/Breakwater/ Nyrstar	Rick Sawyer					
Funding and Support: Advanced Applied Physics Solutions, Canadian Western Economic Diversification, Geological Survey of Canada, NVI/Breakwater/Nyrstar,							

TRIUMF, Fermilab